Research
Thèse
Aspects of connectivity with matroid constraints in graphs
Abstract: The notion of connectivity is fundamental in graph theory. We study a recent development in this field, with the addition of matroid constraints. We extend Menger’s and Edmonds’ packing theorems in this new theory. By finding a counterexample with more than 300 vertices, we disprove a recent conjecture from András Frank.
Research articles
-
On packing spanning arborescences with matroid constraint
Journal of Graph Theory, 2020 -
Old and new results on packing arborescences in directed hypergraphs
Discrete Applied Mathematics, 2018 -
Defensive Leakage Camouflage
CARDIS 2012: Smart Card Research and Advanced Applications, 2012
Talks
-
Séminaire des doctorants
Laboratoire de Mathématiques de Besançon, 2018 -
Journées Graphes et Algorithmes
LAMSADE, Université Paris-Dauphine, 2016 -
Journées Polyèdres et Optimisation Combinatoire
Université du Havre, 2015 -
Journées Graphes et Algorithmes
Université de Bourgogne, 2014